Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

MPC-Based Cooperative Longitudinal Control for Vehicle Strings in a Realistic Driving Environment

2023-04-11
2023-01-0689
This paper deals with the energy efficiency of cooperative cruise control technologies when considering vehicle strings in a realistic driving environment. In particular, we design a cooperative longitudinal controller using a state-of-the-art model predictive control (MPC) implementation. Rather than testing our controller on a limited set of short maneuvers, we thoroughly assess its performance on a number of regulatory drive cycles and on a set of driving missions of similar length that were constructed based on real driving data. This allows us to focus our assessment on the energetic aspects in addition to testing the controller’s robustness. The analyzed controller, based on linear MPC, uses vehicle sensor data and information transmitted by the vehicle driving the string to adjust the longitudinal trajectory of the host vehicle to maintain a reduced inter-vehicular distance while simultaneously optimizing energy efficiency.
Technical Paper

Numerical Assessment of Port Water Injection Capabilities to Reduce CO2 Emissions of a Lambda 1 Turbocharged Spark Ignition Engine

2023-04-11
2023-01-0181
The continuous tightening of CO2 emission targets along with the introduction of Real Driving Emissions (RDE) tests make Water Injection (WI) one of the most promising solutions to improve efficiency, enhance performance and reduce emissions of turbocharged high-performance Spark Ignition engines. This technology, by reducing local in-cylinder mixture temperature, enables higher compression ratios, optimal spark timing and stoichiometric combustion over the entire engine operating range. This research activity, therefore, aims to assess the benefits in terms of CO2 emission reduction of a Port Water Injection (PWI) system integrated in a Downsized Turbocharged Direct Injection Spark Ignition (T-DISI) Engine. In this regard, a 1D-CFD model of the engine capable to predict the impact of the water content on both the combustion process and the knock likelihood was firstly developed.
Technical Paper

Pre-Design and Feasibility Analysis of a Magneto-Rheological Braking System for Electric Vehicles

2023-04-11
2023-01-0888
Magneto-Rheological (MR) Fluid started to be used for industrial applications in the last 20 years, and, from that moment on, innovative uses have been evaluated for different applications to exploit its characteristic of changing yield stress as a function of the magnetic field applied. Because of the complexity of the behavior of the MR fluid, it is necessary to perform lots of simulations, combining multi-physical software capable of evaluating all the material’s characteristics. The paper proposes a strategy capable of quickly verifying the feasibility of an innovative MR system, considering a sufficient accuracy of the approximation, able to easily verify the principal criticalities of the innovative applications concerning the MR fluid main electromagnetic and fluid-dynamic capabilities.
Journal Article

CFD Simulation and Modelling of a Battery Thermal Management System: Comparison between Indirect and Immersion Cooling

2023-04-11
2023-01-0514
Battery Electric Vehicles (BEVs) and Hybrid Electric Vehicles (HEVs) are becoming relevant in the transportation sector, and it is therefore of utmost importance to find a solution to allow batteries to work safely and in a correct temperature range in which performance degradation and/or thermal runaway do not occur. For this purpose, a Battery Thermal Management System (BTMS) is required to ensure the correct operation of the battery pack. The design and control of an efficient BTMS is a complex task, in which multiple technical fields are involved. The paper mainly focuses on the thermal problems affecting the BTMS and sets two main goals: 1) to provide a comparison of two possible BTMS solutions, analyzing constraints and thermal performance for the design task; 2) to present a battery thermal 1D model able to describe the battery module behavior in real-time application to be implemented in a BMS control.
Technical Paper

A Synergic Use of Innovative Technologies for the Next Generation of High Efficiency Internal Combustion Engines for PHEVs: The PHOENICE Project

2023-04-11
2023-01-0224
Despite the legislation targets set by several governments of a full electrification of new light-duty vehicle fleets by 2035, the development of innovative, environmental-friendly Internal Combustion Engines (ICEs) is still crucial to be on track toward the complete decarbonization of on road-mobility of the future. In such a framework, the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) project aims at developing a C SUV-class plug-in hybrid (P0/P4) vehicle demonstrator capable to achieve a -10% fuel consumption reduction with respect to current EU6 vehicle while complying with upcoming EU7 pollutant emissions limits. Such ambitious targets will require the optimization of the whole engine system, exploiting the possible synergies among the combustion, the aftertreatment and the exhaust waste heat recovery systems.
Technical Paper

State of the Art and Future Trends of Electrification in Agricultural Tractors

2022-09-16
2022-24-0002
Hybrid and electric powertrains are experiencing a consistent growth in the automotive field demonstrating their effectiveness in reducing pollutant emissions especially in urban areas. Recently these technologies started to be investigated in the field of work machineries as possible solution to meet increasingly stricter regulations on pollutant emissions. The construction field was the first to recognize the benefits of a partial or total electrification of a work machinery. Nowadays, the consolidation of the technology allowed for its consistent diffusion in the more conservative agricultural field where manufacturers are struggling to meet emissions regulations without losing in terms of work performance. Tractors manufacturers are the most affected actors because of the difficulty to integrate bulky gas aftertreatment systems on board of their vehicle.
Technical Paper

Co-Simulation of a Specialized Tractor for Autonomous Driving in Orchards

2022-09-16
2022-24-0025
The concept of autonomous driving is becoming increasingly familiar in the automotive and “in-door” automation systems fields. Furthermore, the industrial development is focusing its efforts on industry 4.0, whose some main features are data transfer, programming, systems interconnection and automation. The agricultural sector just recently has experienced the first examples of autonomous agricultural vehicles, although agricultural mechanization has reached a good level of automation. Indeed, many examples of automatic machineries are already present in the market such as little robots for the execution of some operations. This work focuses on modelling and simulation of a self-driving orchard tractor. The main goal was to reproduce the behaviour of the specialized vehicle, moving in an orchard or a vineyard and conducting automatic or semi-automatic operations.
Book

Injection Technologies and Mixture Formation Strategies For Spark-Ignition and Dual-Fuel Engines

2022-06-24
Fuel injection systems and performance is fundamental to combustion engine performance in terms of power, noise, efficiency, and exhaust emissions. There is a move toward electric vehicles (EVs) to reduce carbon emissions, but this is unlikely to be a rapid transition, in part due to EV batteries: their size, cost, longevity, and charging capabilities as well as the scarcity of materials to produce them. Until these issues are resolved, refining the spark-ignited engine is necessary to address both sustainability and demand for affordable and reliable mobility. Even under policies oriented to smart sustainable mobility, spark-ignited engines remain strategic, because they can be applied to hybridized EVs or can be fueled with gasoline blended with bioethanol or bio-butanol to drastically reduce particulate matter emissions of direct injection engines in addition to lower CO2 emissions.
Technical Paper

Development of a High-Voltage Battery Pack Thermal Model at Vehicle Level for Plug-in Hybrid Applications

2022-06-14
2022-37-0023
The ongoing global demand for greater energy efficiency plays an essential role in the automotive industry, as the focus is moving from ICEs to hybrid (HEVs) and electric (EVs) vehicles. New virtual methodologies are necessary to reduce the development effort of these technologies. In this context, the thermal management of the vehicle high voltage battery pack is becoming increasingly important, with significant impact on the vehicle’s range in different environmental scenarios. In this paper, an advanced method is proposed to compute 3D temperature distribution of the cells of a high voltage battery pack for Plug-in Hybrid (PHEV) or full electric (EV) applications. The thermal FE model of a complete PHEV vehicle was integrated with an electrical NTG equivalent circuit model of the HV battery to compute the heat loads of the cells.
Journal Article

Calibrating a Real-time Energy Management for a Heavy-Duty Fuel Cell Electrified Truck towards Improved Hydrogen Economy

2022-06-14
2022-37-0014
Fuel cell electrified powertrains are currently a promising technology towards decarbonizing the heavy-duty transportation sector. In this context, extensive research is required to thoroughly assess the hydrogen economy potential of fuel cell heavy-duty electrification. This paper proposes a real-time capable energy management strategy (EMS) that can achieve improved hydrogen economy for a fuel cell electrified heavy-duty truck. The considered heavy-duty truck is modelled first in Simulink® environment. A baseline heuristic map-based controller is then retained that can instantaneously control the electrical power split between fuel cell system and the high-voltage battery pack of the heavy-duty truck. Particle swarm optimization (PSO) is consequently implemented to optimally tune the parameters of the considered EMS.
Technical Paper

Methodology and Application on Load Monitoring Using Strain-Gauged Bolts in Brake Calipers

2022-03-29
2022-01-0922
As technology evolves, the number of sensors and available data on vehicles grow exponentially. In this context, it is essential to use sensors for monitoring key components, increasing safety and reliability, and gathering data useful for mechanical dimensioning and control systems. This paper presents an application of strain-gauged bolts on brake calipers fixation of two electric vehicles. With this approach it was possible to evaluate the loads applied to the brake pads fixation zone and correlate them with braking behavior, therefore gaining insights on braking conditions and system state for an improved braking function control. The goal of the study is analyzing the strengths and limitations of the method and proposing developments to deploy it in real applications. This is particularly important and novel for electric vehicles, where powertrains can create positive/negative torques and generate complex interactions with braking system.
Technical Paper

Adaptive Real-Time Energy Management of a Multi-Mode Hybrid Electric Powertrain

2022-03-29
2022-01-0676
Meticulous design of the energy management control algorithm is required to exploit all fuel-saving potentials of a hybrid electric vehicle. Equivalent consumption minimization strategy is a well-known representative of on-line strategies that can give near-optimal solutions without knowing the future driving tasks. In this context, this paper aims to propose an adaptive real-time equivalent consumption minimization strategy for a multi-mode hybrid electric powertrain. With the help of road recognition and vehicle speed prediction techniques, future driving conditions can be predicted over a certain horizon. Based on the predicted power demand, the optimal equivalence factor is calculated in advance by using bisection method and implemented for the upcoming driving period. In such a way, the equivalence factor is updated periodically to achieve charge sustaining operation and optimality.
Technical Paper

Effect of Temperature Distribution on the Predicted Cell Lifetimes for a Plug-In Hybrid Electric Vehicle Battery Pack

2022-03-29
2022-01-0712
Monitoring and preserving state-of-health of high-voltage battery packs in electrified road vehicles currently represents an open and growing research topic. When predicting high-voltage battery lifetime, most current literature assumes a uniform temperature distribution among the different cells of the pack. Nevertheless, temperature has been demonstrated having a key impact on cell lifetime, and different cells of the same battery pack typically exhibit different temperature profiles over time, e.g. due to their position within the pack. Following these considerations, this paper aims at assessing the effect of temperature distribution on the predicted lifetime of cells belonging to the same battery pack. To this end, a throughput-based numerical cell ageing model is firstly selected due to its reasonable compromise between accuracy and computational efficiency.
Technical Paper

Control Oriented Engine Model Development for Model-Based PPC Control

2022-03-29
2022-01-0480
A model-based control approach is proposed to give proper reference for the feed-forward combustion control of Partially Pre-mixed Combustion (PPC) engines. The current study presents a simplified first principal model, which has been developed to provide a base estimation of the ignition properties. This model is used to describe the behavior of a single-cylinder heavy-duty diesel engine fueled with a mix of bio-butanol and n-heptane (80vol% bio-butanol and 20 vol% n-heptane). The model has been validated at 8 bar gross Indicated Mean Effective Pressure (gIMEP) in PPC mode. Inlet temperature and pressure have been varied to test the model capabilities. First the experiments were conducted to generate reference points with BH80 under PPC conditions. And then CFD simulations were conducted to give initial parameter set up, e.g. fuel distribution, zone dividing, for the multi-zone model.
Technical Paper

Combustion Phasing Indicators for Optimized Spark Timing Settings for Methane-Hydrogen Powered Small Size Engines

2022-03-29
2022-01-0603
In the intermediate stage towards zero-emissions, use of methane-hydrogen blends in spark ignition (SI) engines could represent an attractive application. The present work investigated the relevance of empirical base rules for choosing maximum brake torque spark timing settings when using methane-hydrogen blends. A 0D/1D model was used for investigating the optimized ignition for maximizing engine output. Calibration was performed by using in-cylinder pressure data recorded on a methane fueled small size SI engine for two-wheel applications. After adaptations of the model such as valves timing, for rendering it more representative for power generation applications, the investigation was focused on how MBT spark advance was correlated to the 50% mass fraction burned mark (CA50) and peak pressure location. The fact that they were optimized for methane was found to be essential only for high concentrations of hydrogen.
Technical Paper

Identifying Critical Use Cases for a Plug-in Hybrid Electric Vehicle Battery Pack from Thermal and Ageing Perspectives

2021-09-21
2021-01-1251
The current trend towards an increasing electrification of road vehicles brings to life a whole series of unprecedent design issues. Among these, the ageing process that affects the lifetime of lithium-ion based energy storage systems is of particular importance since it turns out to be extremely sensitive to the variation of battery operating conditions normally occurring especially in hybrid electric vehicles (HEVs). This paper aims at analyzing the impact of operating conditions on the predicted lifetime of a parallel-through-the-road plug-in HEV battery both from thermal and ageing perspectives. The retained HEV powertrain architecture is presented first and modeled, and the related energy management system is implemented. Dedicated numerical models are also discussed for the high-voltage battery pack that allow predicting its thermal behavior and cyclic ageing.
Technical Paper

Localization Method for Autonomous Vehicles with Sensor Fusion Using Extended and Unscented Kalman Filters

2021-09-15
2021-01-5089
This paper presents the design and experimental validation of a localization method for autonomous driving. The investigated method proposes and compares the application of the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) to the sensor fusion of onboard data streaming from a Global Positioning System (GPS) sensor and an Inertial Navigation System (INS). In the paper, the design of the hardware layout and the proposed software architecture is presented. The method is experimentally validated in real time by using a properly instrumented all-wheel-drive electric racing vehicle and a compact Sport Utility Vehicle (SUV). The proposed algorithm is deployed on a high-performance computing platform with an embedded Graphical Processing Unit that is mounted on board the considered vehicles.
Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Technical Paper

Catalytic Oxidation of Soot and Volatile Organic Compounds over Cu and Fe Doped Manganese Oxides Prepared via Sol-Gel Synthesis

2021-09-05
2021-24-0088
A set of manganese oxide catalysts was synthesized and doped with Cu and/or Fe by means of the citric acid sol-gel preparation method. The samples were studied by means of several characterization techniques: field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), N2-physisorption at -196 °C, H2 and soot temperature-programmed reduction (H2-TPR, soot-TPR) and X-ray photoelectron spectroscopy (XPS). The catalytic performance of the prepared catalysts was investigated in the oxidation of a probe VOC molecule (propylene) and carbon soot singularly and simultaneously. The catalytic performances were studied as well assuring a content of 5 vol.% of water in the gaseous reactive mix. The investigations evidenced that the best soot catalytic oxidation rates occurred over the Mn2O3 sample, while the copper-doped manganese oxide (i.e. the MnCu15) showed the best performance in the decomposition of propylene.
Technical Paper

Experimental and Numerical Investigation of a Passive Pre-Chamber Jet Ignition Single-Cylinder Engine

2021-09-05
2021-24-0010
In the framework of an increasing demand for a more sustainable mobility, where the fuel consumption reduction is a key driver for the development of innovative internal combustion engines, Turbulent Jet Ignition (TJI) represents one of the most promising solutions to improve the thermal efficiency. However, details concerning turbulent jet assisted combustion are still to be fully captured, and therefore the design and the calibration of efficient TJI systems require the support of reliable simulation tools that can provide additional information not accessible through experiments. To this aim, an experimental investigation combined with a 3D-CFD study was performed to analyze the TJI combustion characteristics in a single-cylinder spark-ignition (SI) engine. Firstly, the model was validated against experiments considering stoichiometric mixture at 3000 rpm, wide open throttle operating conditions.
X